4,899 research outputs found

    Constraints on a Parity-even/Time-Reversal-odd Interaction

    Get PDF
    Time-Reversal-Invariance non-conservation has for the first time been unequivocally demonstrated in a direct measurement, one of the results of the CPLEAR experiment. What is the situation then with regard to time-reversal-invariance non-conservation in systems other than the neutral kaon system? Two classes of tests of time-reversal-invariance need to be distinguished: the first one deals with parity violating (P-odd)/time-reversal-invariance non-conserving (T-odd) interactions, while the second one deals with P-even/T-odd interactions (assuming CPT conservation this implies C-conjugation non-conservation). Limits on a P-odd/T-odd interaction follow from measurements of the electric dipole moment of the neutron. This in turn provides a limit on a P-odd/T-odd pion-nucleon coupling constant which is 10^-4 times the weak interaction strength. Limits on a P-even/T-odd interaction are much less stringent. The better constraint stems also from the measurement of the electric dipole moment of the neutron. Of all the other tests, measurements of charge-symmetry breaking in neutron-proton elastic scattering provide the next better constraint. The latter experiments were performed at TRIUMF (at 477 and 347 MeV) and at IUCF (at 183 MeV). Weak decay experiments (the transverse polarization of the muon in K+ -> pi0 mu+ nu and the transverse polarization of the positrons in polarized muon decay) have the potential to provide comparable or possibly better constraints.Comment: 7 Pages LaTeX, 2 PostScript figures, uses aipproc.sty. Written version of Invited Paper presented at the 3rd International Symposium on Symmetries in Subatomic Physics, Adelaide, SA, Australia, March 13-17, 200

    Symmetries and Symmetry Breaking

    Full text link
    Several new proton-proton parity violation experiments are presently either being performed or are being prepared for execution in the near future. Similarly, a new measurement of the parity-violating gamma-ray asymmetry in polarized neutron capture on the proton is being developed with a ten-fold improvement over previous measurements. These experiments are intended to provide stringent constraints on the set of seven effective weak meson-nucleon coupling constants. Time-reversal-invariance non-conservation has now been unequivocally demonstrated in a direct measurement at CPLEAR. Tests may also be made of time-reversal-invariance non-conservation in systems other than the kaon system. There exist two classes of time-reversal invariance breaking interactions: P-odd/T-odd and P-even/T-odd interactions. Constraints on the first ones stem from measurements of the electric dipole moment of the neutron, while constraints on the second ones stem from the same and measurements of charge symmetry breaking in neutron-proton elastic scattering and from KK semi-leptonic decays. A series of precision experiments, either ongoing or being prepared, will determine the neutral weak current of the proton by measuring the parity-violating normalized asymmetry in electron-proton elastic scattering. A direct comparison between the electromagnetic and neutral weak ground state currents of the nucleon will allow a delineation of the contributions to these currents of the various quark flavours, including quarks which belong exclusively to the nucleon sea. An extension of these precision experiments to very low momentum transfer would permit stringent limits to be placed on physics beyond the standard model.Comment: 11 Pages LaTeX, including 5 PostScript figures. Uses esprc1.sty. Invited Paper presented at 16th International Conference on Few-Body Problems in Physics, Taipei, March 6-10, 200

    Interactions between Behaviour and Genetics in Wild and Domestic Bird Populations

    Get PDF
    Personality traits can be favoured by both natural and artificial selection, if they result in increased fitness or productivity, and therefore play an important role in both wild and domestic populations. Here, we review how personality traits affect and are affected by natural and artificial selection by focusing on studies from both wild and domestic bird populations. Further, we will also explore how artificial selection affects personality and fitness traits in a domestic population. We will use the great tit (Parus major) and the laying hen (Gallus gallus domesticus) as our model species. When comparing the studies on behaviour genetics in great tits and laying hens, it is fascinating to see that two fields of study that seem quite far apart have so much in common

    Smelling out predators is innate in birds

    Get PDF
    The role of olfaction for predation risk assessment remains barely explored in birds, although predator chemical cues could be useful in predator detection under low visibility conditions for many bird species. We examine whether Great Tits Parus major are able to use the odour of mustelids to assess predation risk when selecting cavities for roosting. We analysed whether the response to predator chemical cues is innate and assessed whether the antipredatory response is associated with exploratory behaviour, a proxy for the personality of birds. In a choice experiment in aviaries, we offered naïve adult Great Tits of known personality two nest-boxes, one control and one experimental. The experimental nest-box had the odour of a mustelid predator or a strong new odour without biological significance, the control nest-box contained no odour. When one of the cavities contained the odour of a predator, birds avoided the use of either of the two offered nest-boxes, whereas there was no avoidance of boxes when one of the nest-boxes contained a control odour. There was no relationship with exploratory behaviour. We show that the ability to use the chemical cues of predators is innate in birds, but individual differences in the response to predator chemical cues cannot be explained by the personality of the bird.

    Charge Independence and Charge Symmetry

    Get PDF
    Charge independence and charge symmetry are approximate symmetries of nature, violated by the perturbing effects of the mass difference between up and down quarks and by electromagnetic interactions. The observations of the symmetry breaking effects in nuclear and particle physics and the implications of those effects are reviewed.Comment: 41 pages, report # DOE/ER/40427-17-N94, Chapter for a book titled "Symmetries and Fundamental Interactions in Nuclei" eds. E.M. Henley and W. Haxton, to be published by World Scientifi

    Baculovirus Per Os Infectivity Factors Form a Complex on the Surface of Occlusion-Derived Virus

    Get PDF
    Five highly conserved per os infectivity factors, PIF1, PIF2, PIF3, PIF4, and P74, have been reported to be essential for oral infectivity of baculovirus occlusion-derived virus (ODV) in insect larvae. Three of these proteins, P74, PIF1, and PIF2, were thought to function in virus binding to insect midgut cells. In this paper evidence is provided that PIF1, PIF2, and PIF3 form a stable complex on the surface of ODV particles of the baculovirus Autographa californica multinucleocapsid nucleopolyhedrovirus (AcMNPV). The complex could withstand 2% SDS-5% ß-mercaptoethanol with heating at 50°C for 5 min. The complex was not formed when any of the genes for PIF1, PIF2, or PIF3 was deleted, while reinsertion of these genes into AcMNPV restored the complex. Coimmunoprecipitation analysis independently confirmed the interactions of the three PIF proteins and revealed in addition that P74 is also associated with this complex. However, deletion of the p74 gene did not affect formation of the PIF1-PIF2-PIF3 complex. Electron microscopy analysis showed that PIF1 and PIF2 are localized on the surface of the ODV with a scattered distribution. This distribution did not change for PIF1 or PIF2 when the gene for PIF2 or PIF1 protein was deleted. We propose that PIF1, PIF2, PIF3, and P74 form an evolutionarily conserved complex on the ODV surface, which has an essential function in the initial stages of baculovirus oral infectio

    The Three-Nucleon System at Next-To-Next-To-Leading Order

    Get PDF
    We calculate higher order corrections for the three-nucleon system up to next-to-next-to-leading within an effective field theory with contact interactions alone. We employ a subtraction formalism previously developed and for which it has been shown that no new three-body force counterterm is needed for complete renormalization up to this order. We give results for the neutron-deuteron phaseshifts and the triton binding energy. Our results are in very good agreement with experimental results and calculations using realistic nucleon-nucleon potentials.Comment: 4 pages, 2 eps figures, revised version to appear in PR
    • …
    corecore